
ACT! Developer’s Reference
®

ACT!® Developer’s Reference
The software described in this book is furnished under a license agreement and may be used only in accordance with the
terms of the agreement.

Copyright Notice

Copyright © 2005 Best Software SB, Inc.

Released: 1/2005 for ACT! (v7) for Windows and ACT! (v7) Premium/Professional for Workgroups.

This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic
medium or machine-readable form without prior consent in writing from Best Software SB, Inc., 1505 Pavilion Place,
Norcross, GA 30093 ATTN: Legal Department.

ALL EXAMPLES WITH NAMES, COMPANY NAMES, OR COMPANIES THAT APPEAR IN THIS MANUAL ARE
FICTIONAL AND DO NOT REFER TO, OR PORTRAY, IN NAME OR SUBSTANCE, ANY ACTUAL NAMES,
COMPANIES, ENTITIES, OR INSTITUTIONS. ANY RESEMBLANCE TO ANY REAL PERSON, COMPANY, ENTITY, OR
INSTITUTION IS PURELY COINCIDENTAL.

Every effort has been made to ensure the accuracy of this manual. However, Best Software makes no warranties with
respect to this documentation and disclaims any implied warranties of merchantability and fitness for a particular purpose.
Best Software shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing,
performance, or use of this manual or the examples herein. The information in this document is subject to change without
notice.

Trademarks

ACT! is a registered trademark of Best Software SB, Inc. Best Software Insights For The Life Of Your Business is a trademark
of Best Software, Inc. Palm OS is a registered trademark, and Palm is a trademark of PalmSource, Inc. Microsoft, Outlook
and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective
owners.

End User License Agreement

ACT! (v7) for Windows and ACT! (v7) Premium/Professional for Workgroups are protected by an End User License
Agreement. To view the agreement, go to the Help menu in the product, click About ACT!, and then click the End User
Agreement button. The ACT! Software Development Kit is protected by the End User License Agreement provided in this
Developer’s Reference and in the SDK online help.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

NOTICE: BEST SOFTWARE SB, INC. ("BEST")
LICENSES THIS DEVELOPERS' REFERENCE FOR THE
SOFTWARE DEVELOPMENT KIT TO YOU ONLY
UPON THE CONDITION THAT YOU ACCEPT ALL OF
THE TERMS CONTAINED IN THIS END USER
LICENSE AGREEMENT. PLEASE READ THE TERMS
CAREFULLY BY PRINTING AND/OR USING THIS
DEVELOPERS' REFERENCE, YOU INDICATE YOUR
ASSENT TO THEM; IF YOU DO NOT ACCEPT THE
TERMS OF THIS AGREEMENT, YOU ARE
PROHIBITED FROM PRINTING AND/OR USING THIS
DEVELOPERS' REFERENCE AND YOU WILL NOT
HAVE A LICENSE FOR THE SDK.

The Developers' Reference for the ACT! 2005 (7.x) Software
Development Kit (the "SDK") and any printed and electronic
manuals, guides, bulletins, and online Help (the
"Documentation") that accompany this End User License
Agreement (the "Agreement") are the property of Best or its
licensors and are protected by copyright law and international
treaty. While Best or its licensors continue to own the SDK,
you will have certain rights to use the SDK after your
acceptance of this Agreement. "Use" means: downloading a
copy of the SDK on a hard disk drive within a single computer,
executing or displaying the SDK.

Your rights and obligations with respect to the use of this SDK
are as follows:

1. GRANT OF LICENSE
Best hereby grants to you a limited, nontransferable, non-
exclusive license to use the SDK under the terms stated in this
Agreement for use in your business or profession. Best reserves
all rights not expressly granted by this Agreement and you
hereby acknowledge that all title and ownership of the SDK
and all associated intellectual property rights are and shall
remain with Best. This Agreement permits you to:

(a) use the SDK: (i) on a single primary computer; and (ii) on
a secondary computer that may be either your home computer
or a portable computer that you own or use in your business or
profession;

(b) retrieve, modify, or delete ACT! database data or database
structure only by way of the ACT! products, the ACT! SDK, or
the ACT! OleDb provider; and

(c) make one copy of the SDK for archival purposes, or copy
the SDK onto the hard disk of your computer and retain the
original for archival purposes.

2. LICENSE RESTRICTIONS
This Agreement does not include the right to perform any of
the following and you agree to refrain from performing any of
the following:

(a) participate in deceptive, destructive or illegal practices
related in any way to use of the SDK or this Agreement;

(b) copy any Documentation that accompanies the SDK;

(c) make any copies of all or part of the SDK other than as
expressly permitted in this Agreement;

(d) sublicense, rent, lease, or loan, any portion of the SDK or
host the SDK on your computer for others to use;

(e) re-sell or distribute any portion of the SDK to another
person or entity;

(f) reverse engineer, decompile, disassemble, modify,
translate, make any attempt to discover the source code of the
SDK;

(g) use the ACT! trademarks as part of a product name,
trademark or business name without prior written approval
from Best;

(h) develop a product that directly competes with ACT!
and/or build conversion functionality that converts end user
data from ACT! to a competing product or service; market or
distribute add-ons or enhancements to ACT! without the
prior written consent of Best;

(i) circumvent technological measures to prevent direct
database access, nor manufacture tools or products to that
effect; or

(j) copy any portion of the ACT! product graphical user
interface for incorporation into or use for any software or
other product without the prior written consent of Best.

3. SUPPORT
Best disclaims any responsibility to provide any customer
support for the SDK.

4. TERMINATION
This Agreement may be terminated by Best without notice if
you fail to comply with any term or condition of this
Agreement. This Agreement may also be terminated for any
reason or for no reason at all with 30 days notice. Upon
termination, you must immediately destroy all copies of the
SDK.

5. NO WARRANTY
The SDK is accepted by you "AS IS" AND "WITH ALL
FAULTS." ALL WARRANTIES CONCERNING THE
SDK, EXPRESS OR IMPLIED, STATUTORY, OR IN
ANY OTHER PROVISION OF THIS AGREEMENT
INCLUDING, WITHOUT LIMITATION, ANY
WARRANTY OF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE, ARE HEREBY EXPRESSLY
DISCLAIMED AND EXCLUDED. YOUR SOLE AND
EXCLUSIVE REMEDY FOR A BREACH OF THIS
AGREEMENT BY BEST SHALL BE TO TERMINATE
THIS AGREEMENT.

6. LIMITATION OF LIABILITY AND DAMAGES
REGARDLESS OF WHETHER ANY PROVISION SET
FORTH HEREIN FAILS OF ITS ESSENTIAL PURPOSE,
IN NO EVENT WILL BEST OR ITS LICENSORS BE
LIABLE TO YOU OR ANY THIRD PARTY FOR ANY
SPECIAL, CONSEQUENTIAL, INDIRECT OR SIMILAR
DAMAGES, INCLUDING ANY LOST PROFITS OR
LOST DATA ARISING OUT OF THE USE OR
INABILITY TO USE THE SDK EVEN IF BEST OR ITS
LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. SOME STATES
DO NOT ALLOW THE LIMITATION OR EXCLUSION
OF LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY TO
YOU. THE DISCLAIMERS AND LIMITATIONS SET
FORTH ABOVE WILL APPLY REGARDLESS OF
WHETHER YOU ACCEPT THE AGREEMENT.

Best Software SB, Inc. End User License Agreement for the ACT! 2005 (7.x)
Developer’s Reference for the Software Development Kit

7. EXPORT RESTRICTIONS
You agree to comply to the extent applicable with the United
States Export Administration regulations, the International
Traffic in Arms regulations and any regulations or licenses
administered by the Department of the Treasury's Office of
Foreign Assets Control.

8. GENERAL

(a) To the fullest extent permitted by law and consistent with
valid entry into a binding agreement, the controlling language
of this Agreement is English and any translation you have
received has been provided solely for your convenience. In the
event you have entered into this Agreement by means of the
display of a translated version of this Agreement in a language
other than U.S. English, you may request a U.S. English
language version of this Agreement by notice to Best. To the
fullest extent permitted by law, all correspondence and
communication between you and Best under this Agreement
must be in English language.

(b) The exclusive judicial forum for any action related to this
Agreement shall be an appropriate federal or state court located
in Georgia. This Agreement shall be governed by the internal
laws of the forum state without regard to the conflict of laws
provisions thereof.

(c) This Agreement allocates risk between you and Best as
authorized by applicable law, and pricing of Best’s products
reflects this allocation of risk and the limitation of liability
contained in this Agreement. If any provision of this
Agreement is found invalid or unenforceable pursuant to
judicial decree, the remainder of this Agreement shall be valid
and enforceable according to its terms.

(d) ACT! is a registered trademark of Best Software SB, Inc.
For an up-to-date list of copyright and trademark statements,
refer either to the copyright page of the Software User's Guide
for your ACT! software or the Help About window within the
ACT! software. Other product names mentioned may be
service marks, trademarks, or registered trademarks of their
respective companies and are hereby acknowledged.

(e) No failure or delay of either party to exercise any rights or
remedies under this Agreement shall operate as a waiver
thereof, nor shall any single or partial exercise of the same or
other rights or remedies preclude any further or other exercise
of the same or other rights or remedies, nor shall any waiver of
any rights or remedies with respect to any circumstances be
constructed as a waiver thereof with respect to any other
circumstances.

(f) Quebec. With regard to Quebec, the parties declare that
they have required that this Agreement and all documents
related hereto, either present or future, be drawn up in the
English language only. Les parties déclarent par les présentes
qu'elles exigent que cette entente et tous les documents y
afferents, soit pour le present ou l'avenir, soient rédigés en
langue anglaise seulement.

(g) Sections 5 (No Warranty), 6 (Limitation of Liability and
Damages), 8(b) (Governing Law), and this Section 8(g) shall
survive the expiration or termination of this Agreement.

(h) This Agreement constitutes the entire agreement
between you and Best with respect to the subject matter hereof,
and supersedes all proposals, oral or written, and all other
communications between the parties with respect to such
subject matter. This Agreement shall not be modified, except
by written agreement signed by the parties hereto. Employees,
officers, and agents of Best are not authorized to modify this
Agreement, or make any additional representations,
commitments, or warranties binding on Best, unless made in
writing and signed by an authorized officer of Best.

(i) Best shall not be liable for and shall be excused from any
failure to deliver or perform or for delay in delivery or
performance due to causes beyond its reasonable control,
including but not limited to, work stoppages, shortages, civil
disturbances, terrorist actions, transportation problems,
interruptions or power or communications, failure or suppliers
or subcontractors, natural disasters or other acts of God.

(j) All notices given hereunder shall be in writing and sent
by overnight courier or delivered in person to Best Software SB,
Inc., Legal Department, 1505 Pavilion Place, Norcross, Georgia
30093.

Contents

Introduction .1

Overview of the ACT! Development Platform. .1

Best practices for working with the SDK .2

Supported ACT! SDK assemblies .2
Third-party components .2
Add-on components. .2
ACT! version support .3

About the Developer’s Reference .3

Chapter 1 Extensibility Model .5

Consuming the Framework .5

Extending the Application .6

Plugins .6
Custom Controls .6
Custom Tabs .7

Chapter 2 Entities and Relationships .9

Entities .9

Contacts .9

Groups .10

Companies .10

Opportunities .11

Chapter 3 The Framework Object Model .13

The ActFramework class .13

Getting started. .13

Managers .13

Metadata .13

Entity lists .14

Working with data .15

Chapter 4 The Application Object Model .17

The ActApplication class .17

UI Managers .17

Plugins .17

Views .17

Application state .18

Menus and toolbars. .18

Custom controls .18

Using .NET design-time attributes and types. .18

Using design-time instruments. .18
Using .NET serialization techniques .19
Using ACT! design-time attributes, interfaces, and types 19
Binding custom controls to a field .19

Custom Tab .20

Chapter 5 Sample Code .21

Using Framework metadata .21

Getting a contact list .22

Index. 23

Introduction

Overview of the ACT! Development Platform
The ACT! platform consist of feature-rich components that are highly extensible. The platform
is built on the .NET Framework. As a development platform, ACT! meets ACT!'s historically rich
customization, personalization, and integration goals. Where ACT! seeks to empower the end
users to customize the product to their business, the ACT! SDK helps third parties extend that
vision through independent development.

The ACT! platform has three logical tiers, the Application, the Framework, and the Database, as
shown in the following figure.

The Application encompasses all user interface aspects of ACT!, including user interface
screens known as views, navigational components such as menus and toolbars, and design-
time components.

The Framework is the engine of ACT!, providing core functionality including data access,
schema metadata and modifications, security, synchronization, database creation and
maintenance, data exchange and interoperability, and other essential elements. The
Framework includes access to first-class entities such as contacts, groups, companies, and
opportunities. It also provides access to extended data including notes, histories, activities, and
documents.

The Database is the storage container for ACT! primary data. It maintains data integrity and
relationships.
1

2

Best practices for working with the SDK
This section identifies the supported ACT! assemblies and gives recommendations for working
with third-party components, placing DLL’s, and ensuring version support.

Supported ACT! SDK assemblies
Developers should build applications only against the supported ACT! SDK assemblies, as
follows.

• Framework assemblies:

• Act.Devices.Entities

• Act.Devices.Synchronization

• Act.Framework

• Act.Framework.ComponentModel.Core

• Act.Framework.DataExchange

• Act.Framework.DataExchange.OutlookSync

• Act.Framework.DataExchange.PalmReader

• Act.Framework.StandaloneActivityRecurUtility

• Act.Framework.Synchronization

• Act.Shared.Collections

• Act.Shared.Diagnostics

• Act.Shared.ComponentModel

• UI assemblies:

• Act.UI

• Act.UI.Core

Other ACT! assemblies exist, but are not supported or maintained for compatibility. Future
versions of ACT! may include non-compatible versions of these assemblies.

Developers should not depend on any DLL’s or EXE’s that ACT! installs other than the
supported assemblies listed above. Unsupported DLL’s and EXE’s may change or be removed.

Third-party components
Developers should not build products against third-party components deployed by ACT!.
Third-party components should be considered unsupported and may change or be revmoved
over inline releases. Using third-party components is not only unsupported but likely illegal. A
developers who uses third-party components must purchase a copy and install it as part of the
application’s install.

Add-on components
Developers should not place DLL’s that are dependant on an Add-on in the Plugins folder. If you
build an Add-on that has other dependent DLL’s, including third-party DLL’s, either install these
in the GAC or create a product subfolder beneath the Plugins folder and place your
dependencies there (you will need to load those dynamically). This ensures that neither ACT!
nor other Add-on .NET dependencies interfere with yours and ensures prompt loading of
plugins.
ACT! for Windows Developer’s Reference

If you develop an Add-on, limit CPU time in IPlugin interface methods and in event handlers of
the ACT! Framework or Application. Extensive CPU time may degrade ACT! general
performance. Instead, use asynchronous patterns to defer work to another thread.

Add-ons should use proper exception handling, especially in handlers for ACT! events. Because
Add-ons are hosted by ACT!, exceptions created by Add-ons affect normal ACT! behavior and
stability.

Use your company name in all your Add-on assembly and interop wrapper file names and in
folder names in the Plugin folder. This will prevent conflict with assembly and file names of other
Add-on vendors.

ACT! version support
To have your product support any ACT! 7.x version, build your product against 7.0. Do not
release products built against any prerelease versions of ACT!.

About the Developer’s Reference
This Developer’s Reference provides information on using the ACT! SDK to extend the
application by developing plugins, custom controls, and custom tabs. The Developer’s
Reference also provides an overview of entities, relationships, the Framework Object Model,
and the Application Object Model. Chapter 5, ”Sample Code" provides sample code for using
Framework metadata.
Introduction 3

1
 Chapter
Extensibility Model

Both the Framework and Application tiers have special ways for third parties to access data and
customize, integrate with, automate, and extend ACT!. The unique needs and interactions of
third parties will determine which ACT! integration path they should use.

This chapter explains when third parties will need to use the Framework and explains some
ways to extend the application using plugins, custom controls, and custom tabs.

Consuming the Framework
The Framework can be consumed when third parties need to integrate with ACT! and when no
interaction with the Application or User Interface is needed. Applications and Windows®
services can consume the Framework to access data, automate functionality, and provide back-
end services. Web applications and services can consume the Framework to provide client
applications or back-end solutions across network boundaries. Trusted devices can also
synchronize using the Framework.
5

Extending the Application
The Application has several extensibility points, including plugins, custom controls, and custom
tabs. Third parties can use these separately to provide new functionality or together to create
more complex solutions.

Plugins
Plugins enable third parties to extend the application behaviorally and/or visually. Plugins can
also serve as gateways to other applications or services that need live interaction with the
Application. As in other applications, plugins in ACT! are given context in the hosting application
when they are loaded. Plugins can access all of the Application (and Framework). Typically,
plugins will subscribe and react to events in the Application and Framework to perform some
specialized functionality.

Custom Controls
Third parties can use custom controls to extend the Application's designable views. These
include the Contact, Group, and Company detail views. Custom controls also can support rich
design-time behavior and integrate with the Layout Designer.
6 ACT! for Windows Developer’s Reference

Custom Tabs
Third parties can add custom tabs to provide new ways to view data, for example, in detail views
of the application.

ACT! includes an OLEDB Provider, which enables read-only access to Database views. This is
the lowest form of data access, since it circumvents the Framework. It can be used to generate
custom reports with tools such as Crystal Reports. Security is maintained using the OLEDB
provider.

Extensibility Model 7

2
 Chapter
Entities and Relationships

Entities
ACT! consists of primary data or entities and extended data or entities. Primary data includes
contacts, groups, companies, and opportunities. Extended data includes notes, histories,
activities, secondary contacts, and documents. This chapter provides a brief overview of each
of these entities.

Contacts
Contacts are a first-class entity. Any kind of extended data can be associated with a contact,
including notes, histories, activities, opportunities, documents, and secondary contacts.
9

Groups
Groups are dynamic or static sets of contacts. Groups can have their own notes, histories, and
documents. Opportunities and activities can be rolled up, so that users can access any of the
items associated with contacts in a group. Groups can also contain subgroups.

Companies
Companies are similar to groups. They can have their own notes, histories, and documents, and
they can roll up opportunities and activities as well. Companies can also have sub-companies,
known as divisions.
10 ACT! for Windows Developer’s Reference

Opportunities
Opportunities are associated with one contact, one process, and one stage. Opportunities can
have many products and services.
Entities and Relationships 11

3
 Chapter
The Framework Object Model

This chapter gives an overview of the Framework object model.

The ActFramework class
ActFramework, found in Act.Framework.dll, is the root Framework class. It is the entry point to
all ACT! core functionality.

Getting started
To use ActFramework, you must be authenticated as an ACT! user and log in as described in
the following:

ActFramework framework = new ActFramework();
framework.LogOn("CHuffman", "password", "localhost", "MyDatabase");

Managers
ActFramework exposes Managers via properties. Managers are gateways to feature- or entity-
related functionality. For example, a ContactManager is accessible for the Contacts property,
which is responsible for contact-related operations.

Metadata
Much of the structure that defines extended data classes, such as Note, History, and Activity, is
well defined and unalterable. The data surrounding these is available via members of the data's
respective classes. However, you can change the topology of primary entities, such as Contact,
Group, Company, and Opportunities. You do this via Define Fields (using the application) or via
the DatabaseManager (using the Framework). These entities are largely metadata driven.
Determining their landscape and data is a process of discovery.

The Framework exposes such an entity's fields via field descriptors. Specifically, entities have
specialized types deriving from DBFieldDescriptor. Most of the functionality is based on a .NET
native type, the PropertyDescriptor. A PropertyDescriptor is a virtual representation of a
property. PropertyDescriptor objects can depict the topology of some classes, which may or may
not differ from their real properties. Typically, PropertyDescriptor objects are retrieved via
reflection, to dynamically discover the properties of some class. This virtualization can also be
used when databinding a list to a grid (by implementing ITypedList). PropertyDescriptor objects
also contain an AttributeCollection, which represents any attributes or declarative metadata of
the Property.

The Framework extends the capability of a PropertyDescriptor to represent the virtualization of
a record's field; more specifically, to dynamically discover an entity’s fields. Likewise, the
Framework leverages Attribute objects on the PropertyDescriptor (exposed via the
AttributeCollection on the Attributes property) to provide attributes of that field (such as size,
13

mask, or default value). These attributes typically depend on the ACTType of the field (e.g., mask
is not applicable to picture fields).

A PropertyDescriptor defines a property or field in many ways. It defines the type of the property
via PropertyType and whether it is read-only via IsReadOnly. It assigns the field name via
DisplayName. DBFieldDescriptor extends this to provide ACTType, which represents the ACT!
type (such as uppercase or phone number). Values can be retrieved from and updated to entities
using the GetValue and SetValue methods, respectively.

Unlike typical retrieval of PropertyDescriptor objects via reflection, the Framework enables
retrieving DBFieldDescriptor objects via an entity's Manager. For consistency and databinding,
the ActFramework entity Managers expose all fields as if they were metadata-driven. Thus, all
entity managers implement an interface ISupportMetaData. This interface allows retrieval of
metadata for an entity and filtering of the type of metadata by Type or ACTType.

See “Using Framework metadata” on page 21 for a sample of how field descriptors can be used.

You are not limited to field descriptors to get or set data in entities. You can also fetch and update
field data using the FieldCollection indexer on mutable entities. However, using field descriptors
is the preferred method of retrieving and setting data. Field descriptors cache needed metadata,
so reusing a field descriptor to access or change data on multiple entities (e.g., looping over
entities and getting a field value) performs far better than using the field collection on the entity,
which has to look up the metadata each time.

Entity lists
All entities can be retrieved via lists (collections). Like metadata, lists are retrieved through their
respective entity Manager. Each entity Manager may have specialized parameters, such as filter
criteria, that are used to retrieve a list. However, all must at least support retrieving a list passing
SortCriteria. SortCriteria consists of the PropertyDescriptor (see “Metadata” in this chapter),
specifying the field, and the ListSortDirection, specifying the direction on which to sort
(ascending or descending). Some lists, such as mutable entity lists, support sorting on multiple
fields.

Entity lists can be bound to any .NET-aware grid controls, which will use the lists ITypedList
implementation to get the PropertyDescriptor objects (see “Metadata” in this chapter). The
PropertyDescriptor objects are used to name the columns and get data for each row. Grid
controls also will use the entity list's IBindingList implementation to sort, search, and react to list
notifications, such as when a new item is added.

See “Getting a contact list” on page 22 for a sample.
14 ACT! for Windows Developer’s Reference

All entity lists, except for ActivityList, fetch data on demand and cache the data as a way to scale
to large quantities. As a side effect, data may become stale. To refresh data, invoke the Refresh
method. Also, be mindful that iterating over or accessing items in the list may cause data to be
fetched from the database.

Working with data
You can create and delete entities from their Managers. You can create and delete primary
entities, including contacts, groups, and companies, via their lists, using IBindingList.AddNew(),
and IList.Remove() methods. You can retrieve extended data for a primary entity via the
Manager of the extended data. For example, the NoteManager has GetNotes overloads to pass
in a contact or a company.

Within a list, you can find items using the Find() method, which takes a field descriptor (see
“Metadata” in this chapter) and a value. You can use a lookup to get a list of primary entities that
matches a particular criteria. You perform lookups via the LookupManager. Lookups are
essentially list criteria; each criteria is made up of a logical operator (AND/OR), a field, an
operator valid for that field, and a value.
The Framework Object Model 15

4
 Chapter
The Application Object Model

This chapter provides an overview of the Application object model.

The ActApplication class
ActApplication, found in Act.UI.dll, is the parent application class and is the entry point to all User
Interface functionality. The Application typically is not created and accessible directly, unlike the
Framework, but third parties can acquire its context via extensibility points, such as plugins,
custom controls, and custom tabs.

UI Managers
ActApplication exposes UI Managers via properties. Like ActFramework's Managers, the
ActApplication's Managers are gateways to feature- or entity-related functionality.

Plugins
Plugins, as previously mentioned, are given context by the Application (and Framework via the
Application). The Application serves as a loader and host for plugins, which can then react to
events, customize or extend the application, and communicate with other applications.

To become an ACT! plugin, a type must:

• Implement the IPlugin interface (defined in Act.UI.dll).

• Reside in an assembly in the Plugins directory under the ACT! application directory.

The IPlugin interface is a simple interface. It provides an entry point for the application to hand
itself to the plugin and a way to notify the plugin when the application is unloaded. After the
plugin is loaded, and the ActApplication is provided via the OnLoad method, the plugin is
responsible for reacting to events appropriately. For example, the plugin would have to react in
a manner appropriate to the context of the ActFramework's AfterLogon and BeforeLogoff
events. The plugin would also have to react in a manner appropriate to the context of the
BeforeDatabaseLock and AfterDatabaseLock events.

Views
Views are the main User Interface panes in the application. Views, other than calendaring,
typically provide detail or lists. Views can be enumerated via the ViewManager. The
ActApplication notifies listeners, via the CurrentViewChanged event, when a different view is
shown. You can retrieve the current view via the CurrentView property of the ActApplication.
Views can be changed and shown via entity UI managers. For example,
UIContactManager.ShowDetailView() changes the view.
17

Application state
The Application contains information about the state of current entities and lists (such as the
current contact and current contact list). You can access this information via the
ApplicationState property in ActApplication. Events on the application also exist in the form
XXXChanging and XXXChanged, which notify consumers of entity and entity list changes.

Menus and toolbars
Act.UI.Core.dll contains all types and functionality related to menus and toolbars. The Explorer
property on the ActApplication object is the main entry point for accessing, adding, and
removing toolbars. Plugins can use this to add a new menu item and to perform an operation
when the item is selected.

Custom controls
Custom controls can provide new ways to visualize data and interact with the application in
designable views. You can make custom controls available as part of a toolbox tool in the Layout
Designer and add them to layouts to enhance the contacts, groups, and companies detail views.

To become a custom control, a type must:

• Implement IComponent (for example, by deriving from Component or Control).

• Be marked with the CustomControlAttribute attribute (defined in
Act.Shared.ComponenModel.dll).

• Reside in an assembly in the Tools directory under the ACT! application directory.

This enables end users to access the control by right-clicking on the Layout Designer toolbox
and selecting the Customize menu. If selected, the custom control is available in the “Custom”
category of the toolbox, for use in the Layout Designer.

Once the custom control is placed on a layout, and the layout is saved, that custom control must
be installed on the client machine in order for the end user to use that layout.

Using .NET design-time attributes and types
The Layout Designer supports standard .NET design-time related attributes and types; most of
this exceeds the scope of this document. However, minimal design-time related functionality is
documented here to explain basic design-time interaction with the Layout Designer:

CategoryAttribute Mark a property with this attribute to control the category that will display
in the Properties window in the Layout Designer.

DescriptionAttribute Mark a property with this attribute to control the description of the
property that will display in the Properties window in the Layout Designer.

Using design-time instruments
The Layout Designer supports design-time instruments such as TypeConverter and
UITypeEditor. You can use these objects to control the behavior of the properties in the
Properties window in the Layout Designer.
18 ACT! for Windows Developer’s Reference

Using .NET serialization techniques
The Layout Designer also leverages standard .NET techniques for serialization. Custom
controls can leverage these to control which properties get serialized in layouts and how this is
done:

DefaultValueAttribute Mark a property with this attribute to skip serialization of a property
whose value has not changed from the default.

DesignerSerializationVisibility Use this attribute to skip serialization of a property or to
serialize the contents of a property (such as a collection).

ShouldSerializeXXX method Use this method, where XXX is the name of a property, to
enable a control to programmatically manage whether or not a property should be serialized.

Using ACT! design-time attributes, interfaces, and types
You can use ACT!-related design-time attributes, interfaces, and types in the creation of custom
controls:

LayoutToolboxFriendlyNameAttribute Mark a type with this attribute to enable controls to
have a friendly name in the designer (other than its type). Provide a public static string
LayoutFriendlyName property to return the name.

TabableAttribute Mark a type with this attribute to enable controls to participate in Tab and
Enter Stop functionality in the Layout Designer.

ToolboxBitmapAttribute Mark a type with this attribute to enable controls to specify a custom
icon that will display in the toolbox next to the control names.

EmptyTypeConverter Mark a type with a TypeConverterAttribute to enable controls to
completely hide their properties in the Properties window in the Layout Designer.

LayoutControlDesigner Mark a type with a DesignerAttribute to enable the right-click ”Edit
Properties” menu in the Layout Designer.

ICustomClipboardSupport Implement this interface for controls that interact with ACT!'s
clipboard functionality (cut/copy/paste/delete/undo).

SpellCheckableSupportAttribute and ISupportSpellCheck Use these controls to support
spell checking.

LayoutSingletonComponentAttribute Mark a type with this attribute to specify that a control
can exist only once on a layout.

Binding custom controls to a field
You can bind custom controls to a field, similar to binding a Field or Memo control in the Layout
Designer. You must do the following to implement a bound custom control:

• Implement IXXXListBoundControl, where XXX is Contact, Group, or Company. This forces
the control to provide a list component property, which is how it will get the context of the
current entity. Once the list is set, you can attach the control to the PostionChanged and
ItemChanged events on the CurrencyManager (standard .NET databinding) to be notified
when the current entity changes. See SDK samples.

• Implement IXXXFieldBoundControl, where XXX is Contact, Group, or Company. This forces
the control to provide a field descriptor property (“Metadata” on page 13), so the control can
get and set values in the entity when it is updated. See SDK samples.
The Application Object Model 19

• Implement IUpdateableComponent. This tells the control when to update changes on the
underlying entity. See SDK samples.

Custom Tab
You can enrich the Application by creating a custom tab, which may contain its own controls and
interface. You must use a plugin to create a custom tab. The plugin adds a new tab to a layout
after the layout loads. Typically, a plugin will attach to the LayoutChanged event on the
ApplicationState object and add a tab using the
UILayoutDesignerManager.AddTabToCurrentLayout() method. This method takes a .NET
TabPage as a parameter. The plugin must create the tab and add controls to its collection. See
SDK samples.
20 ACT! for Windows Developer’s Reference

5
 Chapter
Sample Code

This chapter contains two samples of code: the first shows the use of Framework metadata; the
second shows getting a contact list.

Using Framework metadata
The following is an example of using Framework metadata. We are printing the field display
name of any contact string fields that can be edited, do not allow empty values, and do not have
any default value (thus, string fields are 'blank' when we create a new contact) :

// filter to just return string fields on a Contact
ContactFieldDescriptor[] fields =
framework.Contacts.GetContactFieldDescriptors(new Type[]{typeof(string)});

// we're going to look for editable fields that don't allow empty values
// and don't have default values, so we'll need these attribute types
Type allowsEmptyType = typeof(AllowEmptyFieldAttribute);
Type defaultValueType = typeof(DefaultFieldValueAttribute);

// initialize our attributes
AllowEmptyFieldAttribute allowsEmptyFieldAttr = null;
DefaultFieldValueAttribute defaultFieldAttr = null;

AttributeCollection attributes = null;
ContactFieldDescriptor contactField = null;
for (int i=0;i<fields.Length; i++)
{
 contactField = fields[i];

 // make sure we can modify this field
 if (!contactField.IsReadOnly)
 {
 attributes = contactField.Attributes;

 // check if we don't all empty values
 allowsEmptyFieldAttr = attributes[allowsEmptyType] as
AllowEmptyFieldAttribute;
 if (allowsEmptyFieldAttr != null && !allowsEmptyFieldAttr.AllowEmpty)
 {
 // now check to see we don't have a default value
 defaultFieldAttr = attributes[defaultValueType] as
DefaultFieldValueAttribute;
 if (defaultFieldAttr == null || defaultFieldAttr.DefaultValue == null
)
 {
21

 // we found one
 Console.WriteLine(contactField.DisplayName);
 }
 }
 }
}

Getting a contact list
The following sample shows how to get a contact list.

// get the company field descriptor
DBFieldDescriptor companyField =
framework.Contacts.GetFieldDescriptor("TBL_CONTACT.COMPANYNAME", true);

// get contacts I have access to, sorted by company
ContactList contacts = framework.Contacts.GetContacts(
new SortCriteria[]{new SortCriteria(companyField,
ListSortDirection.Ascending)});
22 ACT! for Windows Developer’s Reference

Index
Symbols
.NET design-time attributes and types 18
.NET Framework 1
.NET serialization techniques 19

A
ACT! design-time attributes, interfaces, and

types 19
ACT! platform 1
ACT! version support 3
Act.UI.Core.dll 18
Act.UI.dll 17
ActApplication class 17
ActFramework class 13
ActFramework Managers 13
Activities 9
add-on components 2
Application 5
Application state 18
Application tier 1
assemblies 2

B
Business logic tier 1

C
CategoryAttribute 18
Collections 14
Companies 9, 10
components

add-on 2
third-party 2

Contacts 9
Crystal Reports 7
Custom controls 6, 18

binding to a field 19
Custom tab

creating using a plugin 20
Custom tabs 6, 7

D
data

extended 9
primary 9
working with 15

Data logic tier 1
DefaultValueAttribute 19
DescriptionAttribute 18
DesignerSerializationVisibility 19
design-time

attributes 19
interfaces 19
types 19

Design-time components 1

Design-time related instruments 18
Divisions 10
DLL’s

add-on 2
dependant 2

E
EmptyTypeConverter 19
entities 9
entity lists 14

binding to grid controls 14
exception handling 3
Extended data 9
Extended entities 9

F
Field descriptors 13
FieldCollection indexer 14
Focuments 9
Framework 5
Framework metadata example 21
Framework tier 1

G
Groups 9, 10

H
Histories 9

I
ICustomClipboardSupport 19
Implement IUpdateableComponent 20
Implement IXXXFieldBoundControl 19
Implement IXXXListBoundControl 19
IPlugin interface 3, 17
ISupportSpellCheck 19

L
Layout Designer 18
LayoutControlDesigner 19
LayoutSingletonComponentAttribute 19
LayoutToolboxFriendlyNameAttribute 19
Lists 14
logging in to ActFramework 13

M
Managers

ActFramework 13
UI 17

Menus 1, 18
Metadata 13

N
Notes 9

O
OLEDB Provider 7
Opportunities 9, 11
 23

24
P
Platform tiers 1
Plugins 6, 17

adding menu items 18
third-party DLL’s 2

Presentation logic tier 1
Primary data 9
Primary entities 9
PropertyDescriptor 13

S
Secondary contacts 9
security, with OLEDB provider 7
serialization 19
ShouldSerializeXXX method 19
SortCriteria 14
SpellCheckableSupportAttribute 19
state, of the application 18
Subgroups 10

supported assemblies 2

T
TabableAttribute 19
tabs, adding custom 7, 20
third-party components 2
Tier

Application 1
Database 1
Framework 1

Toolbars 1, 18
ToolboxBitmapAttribute 19

U
UI Managers 17

V
version support 3
Views 1, 17

extending with custom controls 6
ACT! for Windows Developer’s Reference

	Contents
	Introduction
	Overview of the ACT! Development Platform
	Best practices for working with the SDK
	Supported ACT! SDK assemblies
	Third-party components
	Add-on components
	ACT! version support

	About the Developer’s Reference

	Extensibility Model
	Consuming the Framework
	Extending the Application
	Plugins
	Custom Controls
	Custom Tabs

	Entities and Relationships
	Entities
	Contacts
	Groups
	Companies
	Opportunities

	The Framework Object Model
	The ActFramework class
	Getting started
	Managers
	Metadata
	Entity lists
	Working with data

	The Application Object Model
	The ActApplication class
	UI Managers
	Plugins
	Views
	Application state
	Menus and toolbars
	Custom controls
	Using .NET design-time attributes and types
	Using design-time instruments
	Using .NET serialization techniques
	Using ACT! design-time attributes, interfaces, and types
	Binding custom controls to a field

	Custom Tab

	Sample Code
	Using Framework metadata
	Getting a contact list

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	S
	T
	U
	V

